Abstract

The helix length dependence of the stability of antiparallel four-chain coiled coils is investigated using eight synthetic peptides (Lac21-Lac28) whose sequences are derived from the tetramerization domain of the Lac repressor protein. Previous studies using analytical ultracentrifugation sedimentation equilibrium experiments to characterize Lac21 and Lac28 justifies the use of a two state model to describe the unfolding behavior of these two peptides. Using circular dichroism spectropolarimetry as a measure of tetramer assembly, both chemical and thermal denaturation experiments were carried out to determine thermodynamic parameters. We found that the hydrophobic core residues provide the greatest impact on stability and, as a consequence, must reorganize the register of the antiparallel helices to accommodate the burial of the nonpolar amino acids. Addition of noncore residues appears to have only a minor effect on stability, and in some cases, show a slight destabilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call