Abstract

PurposeThe purpose of this paper is to focus on the changing dynamics of the ultrasonic consolidation (UC) process due to changes in substrate geometry. Past research points to a limiting height to width ranging from 0.7 to 1.2 on build features.Design/methodology/approachResonances of a build feature due to a change in geometry are examined and then a simple non‐linear dynamic model of the UC process is constructed that examines how the geometry change may influence the overall dynamics of the process. This simple model is used to provide estimates of how substrate geometry affects the differential motion at the bonding interface and the amount of energy emitted by friction change due to build height. The trends of changes in natural frequency, differential motion, and frictional energy are compared to experimental limits on build height.FindingsThe paper shows that, at the nominal build, dimensions of the feature the excitation caused by the UC approach two resonances in the feature. In addition trends in regions of changes of differential motion, force of friction, and frictional energy follow the experimental limit on build height.Originality/valueThis paper explores several aspects of the UC process not currently found in the current literature: examining the modal properties of build features, and a lumped parameter dynamic model to account for the changes in of the substrate geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.