Abstract

Shear wall is a structural member that provides stability to structure against lateral loads. These walls play important role in multi-storey building situated in seismically active zones. They can resist large horizontal loads and simultaneously support gravity loads owing to its higher stiffness and strength. In this study, we have focused on the comparison between the effects of earthquake and wind loading on G+5 storey building with different positions of shear wall in Zone III. Twelve models were prepared and then analyzed for earthquake and wind loading in +X direction with the help of STAAD.Pro v8i software. These models include different position of full height shear wall and also include partial shear wall at different floor levels. Results were prepared in terms of maximum lateral displacements in the whole structure, nodal displacements at particular node and bending moments at corner column. The results were accurate and displayed acceptable performance in terms of lateral displacement and bending moment. From the analysis, it was found that lateral nodal displacements and bending moments are reduced in building with shear wall as compared to building without shear wall. Also, building with shear wall has more earthquake and wind resistance as compared to building without shear wall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.