Abstract

ABSTRACTIn solvent extraction processes, organic phase impurities can negatively impact separation factors, hydrolytic performance, and overall system robustness. The resulting inconsistent performance can affect the process-level viability of a separation concept, and thus knowledge of the impurities present, their effects on the process, and how to remove them are vital. Deleterious impurities may be introduced into a system from reagent synthesis, or result from degradation via radiolysis and hydrolysis during use. In this work, the acidic extractant, 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP])—proposed for application in extractive processes aimed at separating trivalent minor actinides from lanthanides and other fission products—is characterized with respect to its common impurities and their impact on Am(III) stripping in the Actinide Lanthanide SEParation (ALSEP) system. To control impurities in HEH[EHP], existing purification technologies commonly applied for the acidic organophosphorus reagent were assessed and a new chromatographic purification method specific to HEH[EHP] is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.