Abstract

In the present work, we investigated the alteration of oxidative and peroxidative activities of peroxidases (PODs) along the longitudinal root axis of barley seedlings during heavy metal (HM; e.g., Cd, Cu, Hg, Ni, Pb) treatment. Analysis of the individual root segments revealed that all of the analyzed HMs caused an increase of guaiacol-POD activity, however to a different extent and spatial distribution. Cd-induced ferulic acid POD activity was observed along the whole root tip (RT), while Cu and Hg caused its increase in the meristematic zone and Ni mainly at the end of the differentiation zone of RT. The activation of coniferyl alcohol POD by HMs was detected along the whole RT. HM-induced hydrogen peroxide-generating POD activity was localized mainly to the elongation zone of RT. Elevated chlorogenic acid POD activity was observed in the meristematic zone and at the end of the differentiation zone of RTs. The activation of several PODs is probably associated with enhanced H2O2 production and lignification as a defense response of roots to several HM, to prevent their uncontrolled flux. On the other hand, this defense response is accompanied by root growth inhibition, due to the enhanced rigidification of cell wall and accelerated differentiation of RTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.