Abstract

By liquid metal cooling (LMC) process, the Ni-43Ti-7Al (at.%) alloy has been directionally solidified (DS) at different heating temperatures (1450°C, 1550°C, 1650°C) and a constant withdrawal rate of 100μm/s. The results showed that anomalous eutectic structures which consisted of Ti2Ni and TiNi phases were formed at the grain boundaries of as-cast sample and similar structures were also observed in the intercellular regions of DS samples. However, the microstructure changed from the equiaxial structure to the cellular structure due to the axial thermal gradients imposed. After DS, the NiTi and Ti2Ni phases preferentially grew along certain orientation, but the preferred crystallographic orientations of them changed as the heating temperature increased to 1650°C, which might be related to the change of melt structure. As expected, the volume fraction of Ti2Ni increased from 3.3% to 5.2% and the cellular spacing decreased from 47.8μm to 27.0μm as heating temperature increased. In addition, the stability of solid/liquid interface decreased, resulting from the coupling effects of G and ΔT- with the heating temperature increasing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.