Abstract

Fe64Co16Zr10B10 amorphous alloy prepared by a single roller melt spinning was annealed at 550, 600, 650 and 750 °C for 1 h under different heating rates. The thermal property, microstructure and magnetic property of alloys are investigated by simultaneous thermal analyzer (STA), X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). At the same heating temperature, the crystallization of amorphous alloy is different along with the change of heating rate. The relationship between the heating rate and the microstructure is studied. The heating rates affect the distribution of elements and result in the difference in the crystallization products. Coercivity (Hc) of Fe64Co16Zr10B10 alloy at the initial crystallization stage can be improved by the decrease of heating rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call