Abstract
Austenite formation during intercritical annealing was studied in a cold-rolled dual-phase (DP) steel based on a low-carbon DP780 composition processed in the mill. Two heating rates, 10 and 50 K/s, and a range of annealing temperatures from 1053 K to 1133 K (780 °C to 860 °C) were applied to study their effects on the progress of austenitization. The effect of these process parameters on the final microstructures and mechanical properties was also investigated using a fixed cooling rate of 10 K/s after corresponding annealing treatments. It was found that the heating rate affects the austenite formation not only during continuous heating, but also during isothermal holding, and the effect is more pronounced at lower annealing temperatures. Faster heating delays the recrystallization kinetics of the investigated steel. The rate of austenite formation and its distribution are strongly influenced by the extent of overlapping of the processes of recrystallization and austenitization. It appeared that the heating rate and temperature of intercritical annealing have a stronger effect on the final tensile strength (TS) of the DP steel than holding time. Both higher annealing temperatures and long holding times minimize the strength difference caused by a difference in heating rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.