Abstract

Polycrystalline CrN/AlN multilayer coatings were deposited by RF magnetron sputtering on silicon (001) substrates. The bilayer periods of CrN/AlN were controlled from 4 nm to 20 nm by the use of shutters, which were adjusted by a programmable logic control (PLC). To evaluate the thermal stability, the films were annealed at 500 °C, 600 °C, 700 °C, 800 °C, and 850 °C, for 1 h in both vacuum and air environments. The phase transformation during thermal evolution was studied by X-ray diffraction (XRD). The microstructure of CrN/AlN multilayer coatings as-deposited and after annealing was observed by transmission electron microscopy (TEM). The hardness of as-deposited CrN/AlN coating with a period of 4 nm was 28.2 GPa, which was 60% higher than that predicted by the rule of mixtures. The hardness of CrN/AlN multilayer coatings annealed at 850 °C in vacuum remained similar to the as-deposited state, and the nano-layered structure still persisted. The thermal stability of CrN/AlN coatings was better than that of CrN coating. The hardness degradation ratio of CrN/AlN coating with modulation period of 4 nm was only 8.1% at 700 °C, which was superior to that of a simple CrN coating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.