Abstract

This research study was focused on the effect of heat treatment on the isothermal oxidation of Fe-33Ni-18Cr alloy at 1000 °C. The Fe-33Ni-18Cr alloy was undergone heat treatment at three different temperatures, namely 1000 °C, 1100 °C and 1200 °C for 3 hours soaking time followed by water quench to vary the grain size of the alloy. The heat-treated alloys was prepared for further isothermal oxidation test. The heat-treated alloys was ground by using several grit of silicon carbide papers as well as weighed by using analytical balance and measured by using Vernier caliper before the oxidation test. The heat-treated Fe-33Ni-18Cr alloys was isothermally oxidized at 1000 °C for 150 hours exposure time. The characterization of the oxidized samples was carried out using optical microscope and scanning electron microscope (SEM). The heat treatment result shows that, increasing the heat treatment temperature was increased the average grain size of the alloy. The kinetics of oxidation was followed the parabolic rate law which represent the diffusion-controlled oxide growth rate. Fine grain structure of 1000i-1000 sample shows minimum weight gain and lower oxidation rate compared to samples of 1000i-1100 and 1000i-1200. On the other hand, 1000i-1100 and 1000i-1200 samples indicate the formation of oxide spallation and crack propagation on the oxidized surface, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call