Abstract

Lead-free piezoelectric ceramics, (Bi0.70Ba0.35)(Fe0.65Ti0.35)O3 (BBFT), were fabricated via a solid-state reaction method and then treated using different heat-treatment processes (furnace cooling, air quenching (AQ), and water quenching). In all these ceramics, the X-ray diffraction analysis revealed morphotropic phase boundaries between the rhombohedral and tetragonal phases. Changes in the average grain size, relative density, and electrical properties in the BBFT–AQ composition were observed. For the optimum BBFT–AQ ceramic, significantly enhanced dynamic (d33* ~ 340 pm/V) and static (d33 ~ 165 pC/N) piezoelectric coefficients were obtained. Moreover, the d33* increased to 40% (d33* ~ 475 pm/V) with increasing temperature from 25 °C to 75 °C upon the application of a 4.0 kV/mm electric field. The related defect states were established by the variation in the transition of Fe3+ to Fe2+ and OV or $$V_{O}^{ \bullet \bullet }$$ concentration observed using X-ray photoelectron spectroscopy analysis. These factors are directly related to the electromechanical response enhancement in the BBFT piezoceramics. This study provides a paradigm for a deeper analysis of particular scientific heat-treatment mechanisms and the enhancement of functional properties in BBFT ceramics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.