Abstract

Heat treatment is an effective method to improve biological resistance of low natural durability wood species. The aim of this study was to enhance the decay resistance of Pinus patula, an African low natural durability softwood species, via wood thermal modification technique. Heat treatment was performed on wood specimens under inert conditions at different heat treatment intensities to reach mass losses of 5, 10 and 15%. Heat treated specimens were exposed to fungal decay using the brown rot fungus Poria placenta. The wood chemical and elemental composition was determined as well as extractives toxicity before and after wood thermal modification to understand the reasons of durability improvement. The treated specimens exhibited a significant increase in their durability against wood decay in line with the severity of the treatment. Wood holocellulose was found to be distinctly more sensitive to the heating process than the lignin constituent. In addition, obvious correlations were observed between weight losses recorded after fungal exposure and both holocellulose decrease and lignin ratio increase. The same correlations were observed with the elemental composition changes allowing using the observed differences for predicting of wood durability conferred by heat treatment. Furthermore, no significant differences were observed between the toxicity of Pinus patula wood extractives before and after its thermal modification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.