Abstract

Monte Carlo method was applied to simulate the oscillatory behavior during partial oxidation of methane under non-isothermal condition. The simulation was performed to examine the influences of heat transfer constant and particle size on the kinetic oscillation. The oscillatory period and amplitude were observed to increase with the increase of heat transfer constant. The increase of catalyst particle size was found to result in short oscillatory period and more or less regular oscillations combined with the formation of oxide down to L = 100.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.