Abstract

Heat stress (HS) increases the death of intestinal cells in pigs, which, in turn, may elevate the endogenous intestinal loss (EIL) of proteins and AA. An experiment was conducted to analyze the effect of HS on the AA composition of intestinal endogenous proteins and the EIL of AA in pigs. Eight pigs (25.2 ± 1.2 kg initial BW) were surgically implanted with T-type cannulas at the end of the small intestine. After surgery recovery, during the subsequent 7 d, all pigs were adapted to a protein- and AA-free diet and trained to consume the same amount of feed twice a day. All pigs were housed under thermoneutral (TN) conditions (22 ± 2°C) during this time. The following day, all pigs were still under TN conditions and ileal content was collected during 12 consecutive hours, at the end of which and for the following 8 d the pigs were exposed to natural HS conditions (31 to 37°C). Ileal content was collected again on d 2 (HS at d 2 [HSd2]) and 8 (HS at d 8 [HSd8]). Body temperature (BT) was measured in another group of 8 pigs every 15 min during the whole study. The average BT at HSd2 (39.6°C) was higher ( < 0.05) compared with both TN conditions (38.6°C) and HSd8 (38.8°C), but it did not differ between TN conditions and HSd8. The AA composition of endogenous intestinal protein was not affected by HS. The EIL of Arg and His were greater ( < 0.05) and the EIL of Thr and Phe tended to be greater ( ≤ 0.10) at HSd2 than in TN conditions; the EIL of Pro was greater ( = 0.01) at HSd8. The EIL of the remaining AA was not affected by HS. Although HS increased the EIL of Arg and His within the first 2 d, it appeared that normal EIL was shortly reestablished. These data show that acute HS does not affect the AA composition of intestinal endogenous proteins in growing pigs and that the EIL of AA may not be critical in growing pigs acclimated to high ambient temperature. Nevertheless, the increased EIL of Arg and Thr at HSd2 indicate that HS might affect the integrity of the intestinal epithelium of pigs during the first day of their exposure to high ambient temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.