Abstract

Journal bearing materials are required to have special characteristics such as compatibility with rubbing interface materials, embeddability for particles and wear debris, conformability to accommodate misalignment, thermal and corrosion resistance. Although white metals or babbitt metals used in most journal bearing have almost the required characteristics, they have possibility of seizure between the bearing material and the journal when the oil film is broken.In this study, a hybrid composite journal bearing composed of carbon fiber reinforced phenolic composite liner and metal backing was manufactured to solve the seizure problem of metallic journal bearing materials because the carbon fiber has self-lubricating ability and the phenolic resin has thermal resistance characteristics. To estimate the wear resistance of carbon fiber phenolic composite, wear tests were performed at several pressures and velocities. The oil absorption characteristics, coefficient of thermal expansion, strength and stiffness of the composite were also tested. Using the measured stiffness values, the thermal residual stresses in the composite were calculated to check the reliability of the composite journal bearing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call