Abstract

A small granule starch from sand rice (Agriophyllum squarrosum) was subjected to heat‐moisture treatment (HMT) at different moisture contents (MCs,15%–30%). With MC≤20%, a higher MC resulted in increases in the starch orders (i.e., short‐range and crystalline structure) with unchanged granule morphology. Nonetheless, a further elevated MC (>20%) gradually destroyed the granule morphology and starch orders. Also, HMT gradually vanished the lamellar structure as MC increased during HMT. These structural evolutions in HMT‐modified starch resulted in greater thermal stability, higher pasting temperature, lower pasting viscosity and weakened digestibility. Particularly, HMT applied directly in sand rice starch at 20% MC obtained the highest amount of SDS and RS (23.6%), which was 2.2‐fold higher than that of native starch. Therefore, the small granule sand rice starch can be modulated by HMT through controlled MC to expand their application range in food production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.