Abstract

The effect of simulated welding thermal cycle on the microstructure and impact toughness of heat affected zone (HAZ) in 2205 duplex stainless steel was investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy and room temperature impact test. The results show that the morphology and volume fraction of austenite change greatly with heat input. The amount of residual austenite and grain boundary austenite (GBA) decreases while Widmanstatten austenite (WA) laths and intergranular austenite increase with the increase in heat input. Only the fine equiaxed austenite exists in the HAZ when the heat input is increased up to 61.8 kJ/cm. WA laths nucleate initially either at the ferrite and GBA phase boundaries or directly in ferrite grains and begin to decompose into diamond-shaped austenite with the heat input larger than 25.2 kJ/cm. The impact toughness shows a non-monotonic variation, which is related to the increase in austenite fraction and the formation and the decomposition of WA laths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.