Abstract

The effects of preheating and heat input on hydrogen assisted weld joint cracking are investigated at a restraint intensity of 32 kN mm−2 of a 0.13% C, 1.5% Mn, 0.032% Nb high strength steel of 50 mm thickness in the IRC test, using a high hydrogen experimental electrode of 530 N mm−2 yield strength.For a heat input ranging from 0.6 to 1.05 kJ mm−1 a critical preheating temperature of 140°C for almost complete crack prevention, for a range from 1.5 to 2.05 kJ mm−1, 120°C were found respectively. Nominal stresses at the ends of the 70‐80 mm long welds at the start of extensive cracking increase with heat input and preheat, the crack propagating from the HAZ into the weld metal quickly. Under conditions without or close to cracking, however, final stresses after 18 h are reduced with heat inputs. Consequently, crack critical combinations of preheating and heat input are linked to stresses decreasing with heat input but increasing with preheat. From the established IRC‐test diagram required combinations of local preheat and heat input for either avoiding hydrogen cracking or overstressing of the weld metal can be determined. Currently used cracking prediction procedures do not consider the effect of heat input and preheat on stress sufficiently and, therefore, may provide unsafe conclusions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.