Abstract

Sol–gel routes to metal oxide nanoparticles in organic solvents under exclusion of water have become a versatile alternative to aqueous methods. We focus on the preparation of well-aligned ZnO nanorod arrays using non-aqueous sol–gel synthesis route, where ZnO nanorods arrays have been grown on glass substrates. This work provides a systematic study of controlled morphology and crystallinity of ZnO nanorod arrays. The investigation demonstrates that the synthesis process conditions of ZnO thin film have strong influences on the morphology and crystallinity of the ZnO nanorod arrays grown thereon, where non-aqueous process offers the possibility of better understanding and controlling the reaction pathways on the molecular level, enabling the synthesis of nanomaterials with high crystallinity and well-defined, uniform particle morphologies. Here the annealing temperature plays an important role on the growth of nanostructures of the ZnO grains and nanorod arrays. The scanning electron microscopy (SEM) image shows that the growth of ZnO nanorod arrays are high-quality single crystals growing along the c-axis perpendicular to the substrates. A detailed analysis of the growth characteristics of ZnO nanostructures as functions of growth time is also reported.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call