Abstract
Semiconducting nanomaterials of II–VI groups are the key elements of continued technological approaches made in the field of optoelectronic, magnetic and photonic devices due to their size-dependent properties. Ion beams create changes in the material along their track; this not only exhibits excellent properties but also tailors new materials. This article reports the effect of \(\hbox {Ar}^{+}\) ion implantation on the properties of cadmium telluride thin films of about 80 nm thickness. The implantation parameters were adjusted based on computer-aided learning using SRIM (stopping and range of ions in matter) software. The CdTe thin films were deposited by electrodeposition method on ITO substrate. Thin films of CdTe are exposed to \(\hbox {Ar}^{+}\) ions with different fluencies of \(1 \times 10^{15}\), \(5 \times 10^{15}\) and \(1 \times 10^{16} \, \hbox {ions cm}^{-2}\) at Ion Beam Centre, Kurukshetra University, Kurukshetra, India. After implantation, the films were characterized using UV–visible spectroscopy, photoluminescence (PL) and a four-probe set-up with a programmable current–voltage (I–V) source metre. The scanning electron microscopy of pristine film showed smooth and uniform growth of sphere-shaped grains on substrate surface. From optical studies, the values of optical band gap for as-deposited and argon-ion-implanted thin films were calculated. It was found that values of optical band gap decreased with the increase in fluence of ion beam. From PL studies it was found that the intensity got increased with ion fluence. A considerable increase in current was noticed from I–V measurements with ion fluence after implantation. Different properties of pre- and post-implanted thin films are studied.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.