Abstract
This work aims to investigate the effect of hBN on the friction and wear resistance of Sialon composite. Sialon and its composite with 10 wt% hBN were fabricated by SPS sintering. The effect of hBN additive on the phase composition, microstructure, densification behavior, mechanical and dry sliding tribological properties of Sialon material was studied. Being sintered at 1600 °C for 10 min, compared to monolithic Sialon, Sialon-hBN composite has more refined β-Sialon grains with smaller aspect ratios and slightly declined relative density. The hardness of the Sialon-hBN composite was reduced due to the weak bonding between Sialon and hBN grains. Nevertheless, its fracture toughness increased ascribing to the toughening mechanisms, including crack deflection and crack bridging. hBN had an essential impact on the tribological performances of the composite due to its lower friction coefficient and good lubrication action. Under the same densification level (i.e., with a relative density of around 97.5%), the friction and wear resistance of Sialon-hBN composite were much better than monolithic Sialon. The main wear mechanisms were tribolayer formation, oxidized wear, and abrasive wear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.