Abstract
ABSTRACTA favorable hardness ratio (Hdisk/Hpin = Hd/Hp) could lead to a transition to mild wear during sliding contact. To determine a more appropriate Hd/Hp value for the sliding wear, the dry sliding pin-on-disk wear tests of Ni3Al matrix composites (NMCs) with multilayer graphene (MLG) are undertaken at Hd/Hp values of 0.99, 0.83, 0.42, and 0.35 at sliding speeds of 0.1, 0.3, 0.5, and 0.7 m/s. It is found that the tribological properties of NMCs are strongly affected by the various hardness ratios. At 0.1 m/s, the friction coefficient decreases with a decrease in Hd/Hp value. The low friction coefficient is 0.14 and the wear rate is 0.9 × 10−5 mm3 N−1m−1 under the ceramic counterpart with Hd/Hp of 0.35. At 0.7 m/s, the tribological properties show the opposite trend with a decrease in Hd/Hp. At an Hd/Hp of 0.35, the smooth compact layer on the worn surface could decrease the friction at 0.1 m/s, and the improved hardness in the subsurface by strain hardening would play an important role in the improvement of wear resistance. Under the metal counterpart with Hd/Hp of 0.99, plastic deformation only occurs on the contact surface and the MLG could suppress further shear deformation in the subsurface, leading to a low wear rate (2.4 × 10−5 mm3 N−1m−1) and friction coefficient (0.15) at 0.7 m/s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.