Abstract
Linearized continuum models of a suspended span with unloaded backstays and of a symmetric three-span suspension bridge are used to study the effects of the flexibility of the hangers on the vertical vibrations of suspension bridges. The models include elastic parabolic cables, flexible distributed hangers with variable length, and a stiffening girder represented by an elastic beam. It is shown that the free vibrations of a suspended span with unloaded backstays are controlled by five dimensionless parameters, while six dimensionless parameters control the response of a symmetric three-span suspension bridge. The results indicate that the flexibility of the hangers has a significant effect on the natural frequencies of the higher modes only when the relative stiffness of the girder is very high. The effects of hanger flexibility on the response of a suspension bridge to localized impulsive loads are also found to be small. These findings confirm the traditional, albeit previously untested, assumption of inextensible hangers. Finally, the threshold amplitudes of free vibrations that would result in the incipient slackening of the hangers are determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.