Abstract

Utilization of rhizobacteria that have associated with plant roots in harsh environments could be a feasible strategy to deal with limits to agricultural production caused by soil salinity. Halophytes occur naturally in high-salt environments, and their roots may be associated with promising microbial candidates for promoting growth and salt tolerance in crops. This study aimed to isolate efficient halotolerant plant-growth-promoting rhizobacterial strains from halophytes and evaluate their activity and effects on sugar beet (Beta vulgaris L.) growth under salinity stress. A total of 23 isolates were initially screened for their ability to secrete 1-aminocyclopropane-1-carboxylate deaminase (ACD) as well as other plant-growth-promoting characteristics and subsequently identified by sequencing the 16S rRNA gene. Three isolates, identified as Micrococcus yunnanensis, Planococcus rifietoensis and Variovorax paradoxus, enhanced salt stress tolerance remarkably in sugar beet, resulting in greater seed germination and plant biomass, higher photosynthetic capacity and lower stress-induced ethylene production at different NaCl concentrations (50-125 mM). These results demonstrate that salinity-adapted, ACD-producing bacteria isolated from halophytes could promote sugar beet growth under saline stress conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call