Abstract

For coral reef fish with an obligate relationship to their habitat, like Pomacentrid damselfish, choosing a suitable home amongst the reef structure is key to survival. A surprisingly small number of studies have examined patterns in adult damselfish distributions compared to other ontogenetic phases. The aim of this study was to determine which reef and coral colony characteristics explained adult damselfish distribution patterns in a Red Sea reef. The characteristics investigated were reef type (continuous or patchy), coral species (seven species of Acropora), and coral morphology (coral size and branching density). The focal damselfish species were Dascyllus aruanus, D. marginatus, Chromis viridis, and C. flavaxilla. Occupancy (presence or absence of resident damselfish), group size and fish species richness were not significantly different between the seven Acropora species. However, within each coral species, damselfish were more likely to occupy larger coral colonies than smaller coral colonies. Occupancy rates were also higher in patchy reef habitats than in continuous sections of the reef, probably because average coral colony size was greater in patchy reef type. Fish group size increased significantly with coral colony volume and with larger branch spacing. Multi-species groups of fish commonly occurred and were increasingly likely with reduced branching density and increased coral size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call