Abstract
In this paper, Ti-27Nb-17Ta-8Zr/HA series composite materials were prepared by spark plasma sintering (SPS) technology. The medical titanium alloy (Ti-27Nb-17Ta-8Zr) with good mechanical properties, wear resistance, and corrosion resistance was combined with the hydroxyapatite (HA) bioactive ceramic with high biological activity and bone-binding ability. Moreover, the density, microstructure evolution, metal/ceramic reaction, mechanical behavior, in vitro bioactivity, and influencing mechanisms of composite materials with different HA contents were studied. The research results indicate that all biological composite materials are composed of β-Ti solution, α-Ti, and ceramic phases (Ti2O, CaTiO3, CaO, TixPy). With the increase of HA content, the compressive strength and yield strength of the composite material show a trend of first increasing, then decreasing, and then slowly increasing. After soaking in SBF artificial simulated body fluid for 5 days, the deposition of elements such as Ca and P on the surface significantly increased, while elements such as Ti, Nb, Ta, and Zr were evenly distributed in the matrix, demonstrating good in vitro mineralization ability and facilitating the attachment and growth of osteoblasts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.