Abstract

The NO emission characteristics of Datong bituminous coal and Yangquan anthracite in O2/H2O/CO2 atmospheres were investigated by using a fixed-bed reactor system, and the emission characteristics were compared with the experimental results from O2/N2 and O2/CO2 atmospheres, especially at low O2 concentrations and high temperatures. The results showed that NO emissions of pulverized coal in O2/CO2 environments were less than those in the O2/N2 environments, regardless of the O2 concentration and the furnace temperature. Adding H2O decreased the possibility of reactions between the reductive groups (NH) and the oxygen radical during devolatilization, which led to a decrease in NO emissions at 1000°C. However, as the furnace temperature increased, "additional" nitrogen precursors (HCN and NH3) generated by enhanced char-H2O gasification were quickly oxidized to generate a large amount of NO during char oxidation that exceeded the amount of NO reduced by NH during devolatilization. Thus, the NO emissions in O2/CO2/H2O atmosphere were higher than those in O2/CO2 atmosphere at a low O2 concentration. However, as the O2 concentration increased, the NO emissions in O2/CO2/H2O atmosphere became lower than those in O2/CO2 atmosphere because the effect of H2O gasification became weaker. The NO emissions of Yangquan anthracite (YQ) were higher than those of DT, but the changing trend of YQ was similar to that of DT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.