Abstract
Uniform distribution of nanofillers in polymer matrix is posing a major challenge in exploiting the full potential of nanomaterials. Various fillers are being evaluated to improve the performance of biopolymer films like starch. In this work, nanocellulose is used as fillers to increase the performance characteristics of starch film. Due to high surface energy and hydrophilic nature of nanocellulose, they tend to aggregate during the film forming process. To circumvent this problem, Gum arabic (GA) was added to distribute the nanocellulose uniformly. GA helps in reduction of surface energy (as analyzed by contact angle) and thus facilitates the uniform distribution of nanocellulose (as demonstrated through polarized light microscopy). Nanocellulose as filler improved the tensile strength of starch film by 2.5 times while that of uniformly distributed nanocellulose by 3.5 times. Moreover, while nanocellulose as such could reduce the water vapor permeability of starch film by 1.4 times, uniformly distributed nanocellulose reduced it by 2 times proving the importance of GA. Starch film filled with nanocellulose and GA will be a 100% biopolymer-based system having potential demand in eco-friendly applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.