Abstract

In vivo folding of many proteins can be facilitated by growth temperature, extent of induction, and molecular chaperones, which prevent over-expressed protein from being trapped into insoluble inclusion bodies. In the present report, we describe the role of molecular chaperones and growth temperature on the solubilization of overexpressed Cellobiose Phosphorylase (CBP) in Escherichia coli. The growth of host at low temperature enhanced enzyme in soluble fraction. Similarly, induction of target gene at low level of IPTG also yielded higher enzyme in soluble fraction. The synergistic effect of low temperature and induction on the prevention of inclusion bodies was also evident from our results. In addition, co-expression of the target gene with two types of molecular chaperones (GroESL and KODHsp) was also attempted. However, none of these chaperones enhanced the solubilization under in vivo conditions. Nevertheless, effective role of low growth temperature coupled with low level of induction appeared to be an attractive feature for producing recombinant protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.