Abstract

The impact of the Ga/N ratio on the structure and electrical activity of threading dislocations in GaN films grown by molecular-beam epitaxy is reported. Electrical measurements performed on samples grown under Ga-rich conditions show three orders of magnitude higher reverse bias leakage compared with those grown under Ga-lean conditions. Transmission electron microscopy (TEM) studies reveal excess Ga at the surface termination of pure screw dislocations accompanied by a change in the screw dislocation core structure in Ga-rich films. The correlation of transport and TEM results indicates that dislocation electrical activity depends sensitively on dislocation type and growth stoichiometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.