Abstract

Previous studies have shown that expression of the toluene and m- and p-xylene degradation pathway in Pseudomonas putida (pWW0) is subject to catabolite repression by succinate. We report here that the expression level of the upper part of this so-called TOL pathway in cells grown in chemostat culture is strongly influenced by nutrient limitation when m-xylene is the sole carbon and energy source. The benzylalcohol dehydrogenase (BADH) levels in cells that are growth-limited by anabolic processes [sulphate (S)-, phosphate (P)- or nitrogen (N)-limiting conditions] were 3-12% of those in cells growing under oxygen limitation (when catabolism limits growth). BADH levels under S-, P- and N-limitation were further decreased (three- to fivefold) when succinate was supplied in addition to m-xylene. Levels of the meta-cleavage pathway enzyme catechol 2,3-dioxygenase were less affected by the growth conditions but the general pattern was similar. Dilution rate also influenced the expression of the TOL pathway: BADH levels gradually decreased with increasing dilution rates, from 1250 mU (mg protein)-1 at D = 0.05 h-1 under m-xylene limitation to 290 mU (mg protein)-1 at D = 0.58 h-1 (non-limited growth). BADH levels were shown to be proportional to the specific affinity whole cells for m-xylene. It may, therefore, be expected that natural degradation rates are adversely affected by anabolic nutrient limitations, especially at relatively low concentrations of the xenobiotic compound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.