Abstract

We recently reported (Larsson and Nemere [2003]: Endocrinology 144:1726) the effects of growth and maturation on 1,25(OH)2D3-membrane initiated effects in the intestine of male chickens. Here we extend our observations to studies on females with two stages of high calcium demand: growth (7-14 weeks) and egg laying (28-58 weeks). The rapid stimulatory effect of 130 pM 1,25(OH)2D3 on calcium transport was assessed as a physiological response in perfused duodena of 7-, 14-, 28-, and 58-week-old chickens, and determined to be 308%, 184%, 170%, and 153%, respectively, of corresponding controls after 40 min. Saturation analyses of [3H]1,25(OH)2D3 binding to nuclear vitamin D receptor (VDR) indicated an absence of cooperative binding, no changes in dissociation constant (Kd) with age, and an increase in maximum binding capacity (Bmax) between 7-week birds and older age groups. Analyses of saturable binding of [3H]1,25(OH)2D3 to the membrane associated rapid response steroid binding protein (1,25D3-MARRS bp) in basal lateral membranes (BLM), indicated cooperative binding, and an increase in both Bmax and Kd with age. No changes in the age-related expression of 1,25D3-MARRS bp were found, as judged by Western analyses, suggesting that a shift in ligand binding to lower affinity membrane components accounted for the increase in calculated Bmax. Basal levels of protein kinase C (PKC) activity decreased with age, as did hormone enhancement of activity. Basal levels of protein kinase A (PKA) activity remained constant with age, while the magnitude of hormone stimulation increased. Comparison of dose-response curves for ion transport and kinase activities in 7-week chicks suggested that PKC mediates phosphate transport while PKA mediates calcium transport. Thus, the age-related loss of calcium transport is most likely related to loss of PKC-mediated phosphate transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.