Abstract

Ground effect plays a vital role in modulating the flow behavior over any streamlined body. The most widely used wing-in ground effect (WIG) aircrafts and seaplanes utilize this phenomenon in order to enhance the aerodynamic performance during the landing and take-off phases of flight. This paper investigates the aerodynamics of ground effect on a NACA 4412 rectangular wing without end plates. The experiment was conducted in a low-speed wind tunnel at Re=2×105 for the ground clearance of 1 and 0.5 of the chord, measured from the maximum thickness position on the airfoil. The pressure distribution over the chord length was recorded for α=3° and 6° to verify the effect of ground clearance during takeoffs. The results have shown to be in good accordance with the literature, as the coefficient of lift augmented with increase in ground proximity and the induced drag was minimized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.