Abstract

This study reports the results of investigation on the main and interaction effects of grit type, aging temperature, and aging time on particle size of ground natural rubber/zeolite (GNR/Z) composite powder using general factorial design of experiment. GNR/Z composite powder produced by mechanical grinding is porous, like an aggregated chain structure. These aggregates exist in clusters of irregular shape. Analysis of variance (ANOVA) shows that the effects of aging temperature and aging time depend on the particle size range. GNR/Z composite powder with large particle size is produced when aging is done at low temperature and short time due to high resistance of rubber to oxidation. On the other hand, GNR/Z composite powder with small particle size is produced when aging is done at low or high temperature and longer aging time. Low temperature condition offers high O2 concentration available to oxidize rubber while high temperature condition leads to more chain scissions due to higher oxidation rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.