Abstract

Sodium chloride is the most often used chemical to malt ice and snow on the roads and has negative effects on the roadside environment. Searching for ways to improve the conditions for growth of trees and shrubs near the roads becomes an urgent matter. One such method of improving growth conditions for plants under salinity might be to use organic matter (green waste compost) and mycorrhizal fungi. This study studied the effect of application in soil different salts on several trees and shrubs growth in growing media. Also, effect of green waste compost and arbuscular mycorrhiza (AM) added to the growing medium was evaluated in terms of growth and K+, Ca+2, and Na+ uptake. The highest pH of the growing medium was noted when sodium carbonate was used. The pH ranged from 8.7 to 9.0 after eight doses of sodium carbonate. The pH of the growing medium was also significantly higher regardless of whether or not green waste compost or mycorrhizal fungi were used. The type of growing medium had a great effect on the growth of most of the trees, but among shrubs the growing medium was only important for Cornus alba, Sambucus nigra, and Spiraea vanhouttei. Growth of all these plants was much better under salinity when green waste compost or green waste compost with AM fungi was used. In all the cases, when salinity of the growing medium retarded growth of trees and shrubs, sodium chloride was the compound that had the strongest growth retarding effect. Leaf ionic composition was significantly affected by salinity in the growing medium, and in some cases also by micorhizal fungi. The type of growing medium had various effects on sodium uptake, depending on species. In most cases, the addition of green waste compost to the growing medium caused a greater amount of sodium in the leaves of tested plants. The use of mycorrhizal fungi had no effect on the uptake of sodium, compared to the control plants (without AM fungi).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.