Abstract

The equations of generalized piezo-thermoelasticity within the frame of dual-phase-lag model are used to study the effect of gravitational force on the behavior of a half-space. Analytic expressions for the displacement components, temperature, stress and strain tensors components are obtained using normal mode analysis. Numerical results for the field quantities of practical interest are given in the physical domain and illustrated graphically. Comparison is made between the results predicted by Lord–Shulman theory and dual-phase-lag (DPL) model. The results obtained by applying both of the L–S theory and DPL model are shown to be very close to each other except in determining one of the components of the electric displacement where the results differ and in general the effect of the presence of gravity is to weaken the absolute values of the physical quantities except in the case of the same component of the electric displacement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.