Abstract
In relation to the development of the interfacial area transport equation, axial developments of void fraction profile, bubble number density, interfacial area concentration and Sauter mean diameter of adiabatic nitrogen-water bubbly flows in a 9 mm-diameter pipe were measured by using a Stereo Image-processing Method under normal- and micro-gravity environment. The flow measurements were performed at four axial locations (axial distance from the inlet normalized by the pipe diameter = 5, 20, 40 and 60) under various flow conditions of superficial gas velocity (0.00823–0.0303 m/s) and superficial liquid velocity (0.138–0.915 m/s). The interfacial area transport mechanism under microgravity environment was discussed in detail based on the obtained data and the visual observation. These data can be used for the development of reliable constitutive relations which reflect the rigorous transfer mechanisms in two-phase flow under microgravity environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.