Abstract
When the Cassie–Baxter and Wenzel states coexist for a liquid droplet on a micropatterned surface, the Cassie-to-Wenzel transition takes place if the energy barrier is overcome. Although multiple metastable states coexist due to the micropattern, this paper presents a simple Cassie-to-Wenzel transition of a 2 µL water droplet on a particular micropillared surface: When the droplet is gently deposited above the surface, it equalizes to the Cassie state at zero gravity; however, it transitions to the Wenzel state at the terrestrial gravity, in which the gravitational potential energy overcomes the energy barrier between the Cassie and Wenzel states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.