Abstract
The use of carbon nanomaterials in various applications requires precise control of their surface and bulk properties. In this paper, we present a strategy for modifying the surface chemistry, wettability, and electrical conductivity of carbon tubes and films through annealing in a vacuum. Experiments were conducted with 60-300 nm nanotubes (nanopipes), produced by noncatalytic chemical vapor deposition (CVD) in a porous alumina template, and with thin films deposited by the same technique on a glassy carbon substrate having the same structure and chemistry of the CNTs. The surface of the as-produced CVD-carbon, treated with sodium hydroxide to remove the alumina template, is hydrophilic, and the bulk electrical conductivity is lower by a factor of 20 than that of fully graphitic multiwalled nanotubes (MWNT) or bulk graphite. The bulk electrical conductivity increases to the conductivity of graphite after annealing at 2000 degrees C in a high vacuum. The analysis of CNTs by transmission electron microscopy (TEM) and Raman spectroscopy shows the ordering of carbon accompanied by an exponential increase of the in-plane crystallite size, L(a), with increasing annealing temperature. Environmental scanning electron microscopy (ESEM) was used to study the interaction of CNT with water, and contact angle measurements performed using the sessile drop method on CVD-carbon films demonstrate that the contact angle increases nearly linearly with increasing annealing temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.