Abstract
This study aimed at fabricating porous crack-free and delamination-free La 0.6Sr 0.4CoO 3− δ electrodes using nanopowders and investigating oxygen reduction (occurring at solid oxide fuel cell cathodes) and oxygen evolution (occurring at solid oxide electrolysis cell anodes) at 600 °C in air. The electrodes were deposited by screen-printing on Ce 0.8Gd 0.2O 1.9 substrates. The pastes were prepared with nanoparticles synthesised by flame spray synthesis and graphite pore former. Without graphite, the electrodes sintered at 1000 °C exhibit relatively low porosity and significant densification which led to partial delamination and large overpotentials. The addition of graphite, which was removed by combustion at ca. 650 °C during sintering, markedly improves electrode performance by increasing porosity and reducing densification. A minimal overpotential for both the oxygen reduction and oxygen evolution was reached for a layer porosity of ca. 50–60 vol.%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.