Abstract

This study evaluates the effects of two types of graphite nanoplatelet (GNP-C and GNP-M) and one type of carbon nanofiber (CNF) on rheological properties, hydration kinetics, autogenous shrinkage, and pore structure of ultra-high-performance concrete (UHPC). The dispersion method was optimized to secure uniform dispersion of the nanomaterials in the UHPC. The plastic viscosity decreased with the nanomaterials content as the content was increased from 0 to 0.05%. As the nanomaterials content increased from 0 to 0.3%, the duration of induction period was extended by the addition of CNF, but shortened by use of GNP-C or GNP-M; cumulative hydration heat release was increased by introduction of nanomaterials; the autogenous shrinkage of UHPC with CNF, GNP-C, and GNP-M was increased by 30%, 20%, and 20%, respectively. The use of 0.3% CNFs reduced the total porosity of the UHPC by approximately 35%, indicating that the presence of CNFs refined the microstructure of UHPC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.