Abstract

To produce castings of titanium, nickel, zinc, copper and many other metal alloys, graphite molds can be used. Using graphite molds has many advantages which are no lubricate or coating layers are needed, high cooling rate, easy of production of complicated shapes. However, for good quality of castings there is needed a good quality of graphite with high mechanical properties and good heat transfer coefficient. Because of no room for manipulating of chemical composite of graphite molds, the most important factor influencing the properties of the molds is their production process. Thus, in the present study mechanical properties of two different type of graphite were investigated. There was graphite produced by different technological processes. One of the processes was a typical graphite production process from the isotropic coke, the second process was an electrolytic method production. Investigations included mechanical tests as well as the structure observations by scanning electron microscope. Chemical analysis was determined by Energy Dispersive X-ray Spectroscopy method additionally, phase analysis using the XRD method was performed. Mechanical properties were obtained by compression tests and three points banding tests at room temperature. It was found that the porosity of a graphite is the key parameter for good its mechanical properties. In addition, it was found that the mechanical anisotropy of graphite is the effect of the production method where the size and distribution of pores play an important role. Ill. 7. Ref. 9.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call