Abstract
Abstract Scratch resistant surface of polypropylene (PP) is of critical importance for automobile, household appliances and other industries. In this paper, the mechanical and scratch properties of PP were studied by incorporation of three types of inorganic particles, including graphene (GP), silicon dioxide (SiO2) and zeolite powder (ZP), respectively. Maleic anhydride grafted polypropylene was used as compatibilizer. The effects of inorganic particle content on crystallization, mechanical properties and scratch resistance of PP composites were studied. Results showed that adding inorganic fillers led to enhanced crystallinity of PP, thus improving the scratch resistance of PP materials. Compared with PP/SiO2 and PP/ ZP, PP/GP exhibited the best scratch resistance and low sensitivity to scratch deformation at 2 wt% filler. We believe that the scratch resistance of PP was determined by material characteristics and crystallinity. This will be a reference for the research on the scratch resistance of other polymer materials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.