Abstract

The high stiffness and damping properties of flax fibres promote the integration of biocomposites in structural applications. However, the strength of flax/epoxy composites is still limited compared to glass/epoxy composites. Graphene oxide (GO) has proved to be a promising building block for nanocomposites due to its high toughness, stiffness and tunable interfacial interactions with polymers. This study aims to understand the potential of GO-based surface treatment of flax fibres to modify the interfacial adhesion and tensile performance of flax fibre/epoxy composites. GO-modification improves the interfacial shear strength of elementary flax fibre/epoxy by 43%. The interfacial improvement is also established by the 40% higher transverse bending strength compared to untreated flax/epoxy composites. The tensile moduli of GO-modified flax/epoxy composites are on average 2 GPa higher than for untreated flax fibre/epoxy composites in all strain ranges. The quasi-static longitudinal tensile strength of unidirectional composites is not affected by GO-modification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call