Abstract

We studied an effect of the graphene oxide (GO) layer on the optical and electrical properties of porous silicon (PS) in hybrid PS–GO structure created by electrochemical etching of silicon wafer and deposition of GO from water dispersion on PS. With the help of scanning electron microscopy (SEM), atomic-force microscopy (AFM), and Fourier transform infrared (FTIR) spectroscopy, it was established that GO formed a thin film on the PS surface and is partly embedded in the pores of PS. A comparative analysis of the FTIR spectra for the PS and PS–GO structures confirms the passivation of the PS surface by the GO film. This film has a sufficient transparency for excitation and emission of photoluminescence (PL). Moreover, GO modifies PL spectrum of PS, shifting the PL maximum by 25 nm towards lower energies. GO deposition on the surface of the porous silicon leads to the change in the electrical parameters of PS in AC and DC modes. By means of current–voltage characteristics (CVC) and impedance spectroscopy, it is shown that the impact of GO on electrical characteristics of PS manifests in reduced capacitance and lower internal resistance of hybrid structures.

Highlights

  • Graphene, a two-dimensional (2D) sheet composed of sp2-bonded single-layer carbon atoms with the honeycomb lattice structure, and graphene oxide (GO), which derives its name from the oxidation process of graphite, are known to be extensively researched materials

  • Characterization of the porous silicon (PS)–GO Hybrid Structure Analysis of the surface and the cross section of the PS–GO structures was carried out using scanning electron microscopy (SEM) methods in modes of elastically reflected electrons and X-ray microanalysis

  • The hybrid PS–GO structures were created by the method of electrochemical etching of silicon wafer and deposition on the PS layer of GO prepared from water dispersion

Read more

Summary

Introduction

A two-dimensional (2D) sheet composed of sp2-bonded single-layer carbon atoms with the honeycomb lattice structure, and graphene oxide (GO), which derives its name from the oxidation process of graphite, are known to be extensively researched materials. Graphene and graphene-based materials have been attracting great research interest with regard to their unique structural features—high surface area, flexibility, superior electric and thermal conductivity, and chemical stability [1,2,3,4]. The chemical composition of GO is classified into rich oxidized region where hydrophilic functional groups (i.e., epoxy and hydroxyl at the planar surface and carboxyl groups at the edges) are anchored to sp carbon atoms as well as pools of un-oxidized graphitic domains which consist of hexagonal aromatic chains of sp2bonded carbon atoms [5, 6]. GO has received great interest because of its superior dispersion ability in water and electronic bandgap different with respect to graphene. Graphene and GO are appealing materials for different applications because they offer a wide palette of advantages compared to other materials [9,10,11,12]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call