Abstract
The application of carbon fiber in cement matrix has some disadvantages, such as poor dispersion and poor interfacial adhesion. In order to improve the interaction between carbon fiber and cement matrix and improve the properties of cement-based composites, carbon fiber was modified by electrophoretic deposition of nano-graphene oxide (GO). In this paper, the effects of doping CF into the cement matrix before and after GO modification are studied comparatively in terms of electrical conductivity, electrothermal warming effect, and pressure-sensitive properties of the cement matrix. It was found that the GO-modified CF reduces both the electrical resistivity of cementitious composites and the required level of fiber incorporation compared to CF. The percolation threshold is 0.7 wt% for CF and 0.5 wt% for GO-CF. The GO-modified CF is more effective than CF as a conductive filler to enhance the electrothermal warming performance of the cement matrix. When the GO-CF doping rate is 0.5%, the specimen temperature increases most rapidly, and the temperature rise value reaches a maximum of up to 30.45 °C, which is twice that of the CF group. When the fiber content is 0.7%, the pressure sensitivity of the sample was the best. When the fiber content is 0.5%, GO-CF can improve the pressure sensitivity of cement mortar specimens, and increase the resistance change rate of the cement mortar specimens by 5.7%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.