Abstract

GO/TiO2 thin films have been synthesized from titanium (IV) isopropoxide (TTIP) by a sol-gel method. The films were deposited onto a glass substrate using spin coating deposition technique then were subjected to annealed process at 350 °C. The different amount of graphene oxide (GO) was added into the parent solution of sol in order to investigate the microstructure, topography, optical band gap and photocatalytic activity of the thin films. The prepared thin films were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), UV-VIS spectrophotometry and degradation of methylene blue (MB). AFM images reveal a rougher surface of GO/TiO2 thin film than bare TiO2 thin film due to GO particles. Moreover, the SEM images showed the formation of semispherical microstructure of bare TiO2 changes to some larger combined molecules with GO addition. The UV–Vis spectrophotometer results show that with optical direct energy gap decreases from 3.30 to 3.18 eV after GO addition due to the effect of high surface roughness and bigger grain size. Furthermore, the optical results also indicated that GO improved the optical properties of TiO2 in the visible range region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call