Abstract
Friction tests conducted between two tool steel surfaces sliding under boundary-lubricated condition in ethanol containing 5 × 10−4 wt% graphene nanoplates (GNP) under the boundary-lubricated condition showed a low coefficient of friction (COF) of 0.18, compared to 0.31 without the addition of GNP, and generated graphene incorporating tribolayers at the contact surfaces. Oxidation of the steel surfaces at high-sliding cycles increased the COF. When a diamond-like carbon (DLC)-coated counterface was used against the tool steel in GNP-containing ethanol a low steady-state COF (µS) of 0.06 was observed, and the wear rates of the DLC-coated steel were decreased by 70% compared to sliding against an uncoated tool steel counterface. Tribolayers that consisted of graphene flakes formed on top of and within the iron oxide layers that were generated on the steel surfaces. The graphene layers were deformed and damaged according to Raman spectroscopy. Cross-sectional high-resolution TEM revealed that sliding contact caused bending and occasional fragmentation of graphene layers. The graphene layers deposited on top of the tribololayers provided low friction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.