Abstract

The effect of thermal fluctuation and particle-size dispersion on longitudinal and perpendicular magnetic recording media is investigated by computer simulation. In the case of longitudinal recording media the coercive force depends largely on the size of the particle rather than its distribution while it depends on both particle size and its distribution in the case of perpendicular recording media. Calculations performed to obtain read/write properties show that removal of particle-size dispersion results in 92% and 229% increase in the recording density in the case of longitudinal and perpendicular recording media, respectively, when particle size is 120 /spl Aring/.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.