Abstract
The influence of grain structure and quenching rates on the exfoliation corrosion (EXCO) susceptibility of 7085 alloy was studied using immersion tests, optical microscopy (OM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and scanning transmission electron microscopy (STEM). The results show that as the cooling rate decreases from 1048 °C/min to 129 °C/min; the size of grain boundary precipitates (GBPs); the width of precipitate-free zones (PFZ); and the content of Zn, Mg, and Cu in GBPs rise, leading to an increase in EXCO depth and consequently higher EXCO susceptibility. Meanwhile, there is a linear relationship between the average corrosion depth and the logarithm of the cooling rate. Corrosion cracks initiate at the grain boundaries (GBs) and primarily propagate along the HAGBs. In the bar grain (BG) sample at lower cooling rates, crack propagation along the sub-grain boundaries (SGBs) was observed. Compared to equiaxed grain (EG) samples, the elongated grain samples exhibit larger GBPs, a wider PFZ, and minor compositional differences in the GBPs, resulting in higher EXCO susceptibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.